Закон Ома — калькулятор, формулы, методика расчета

закон Ома - калькулятор, формулы, расчет
закон Ома - калькулятор, формулы, расчет

Закон Ома — эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году (опубликован в 1827 году) и назван в его честь.

В данном обзоре приведены программы и калькуляторы закона Ома. Также дополнительно приведены основные формулы и методики расчетов.

Закон Ома — калькулятор онлайн

Онлайн калькулятор закона Ома позволяет быстро просчитать основные переменные для участка цепи. Для этого вам необходимо ввести любые два известных значения и нажать «рассчитать».

U Напряжение (В):
P Мощность (Вт):
R Сопротивление (Ом):
I Сила тока (А):

Закон Ома для постоянного тока — расчет, формулы

Закон Ома для постоянного тока определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи.

Закон Ома для полной цепи:

I = ε / (R + r), где:

  • ε — ЭДС источника напряжения, В;
  • I — сила тока в цепи, А;
  • R — сопротивление всех внешних элементов цепи, Ом;
  • r — внутреннее сопротивление источника напряжения, Ом.

Из закона Ома для полной цепи вытекают следующие следствия:

  • При r < R сила тока в цепи обратно пропорциональна ее сопротивлению, а сам источник в ряде случаев может быть назван источником напряжения.
  • При r > R сила тока не зависит от свойств внешней цепи (величины нагрузки), и источник может быть назван источником тока.

Часто выражение I = U / R тоже называют законом Ома. При этом формулировка следующая — сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, где:

  • I — сила тока, измеряемая в Амперах (A).
  • U — напряжение, измеряемое в Вольтах (V).
  • R — сопротивление, измеряемое в Омах (Ом, Ω).

Помимо закона Ома, важнейшим является понятие электрической мощности. Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U):

P = I × U, где:

  • P — электрическая мощность, измеряемая в Ваттах (W).
  • I — сила тока, измеряемая в Амперах (A).
  • U — напряжение, измеряемое в Вольтах (V).

Комбинируя две формулы можно получить зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Множительные приставки в системе СИ примирительные к закону Ома:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А; 1 миллиампер (1 mA) = 0,001 A; 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V; 1 милливольт (1 mV) = 0,001 V; 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Ом): 1 мегаом (1 MОм) = 1000000 Ом; 1 килоом (1 kОм) = 1000 Ом.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W; 1 киловатт (1 kW) = 1000 W; 1 милливатт (1 mW) = 0,001 W.

Закон Ома для цепи переменного тока

В цепи переменного тока сопротивление кроме активной, может иметь как емкостную, так и индуктивную составляющие. Рассмотрим цепь переменного тока, состоящую из резистора сопротивлением R, конденсатора емкостью C и катушки индуктивностью L, соединенных последовательно.

закон Ома - цепь переменного тока

Мгновенные значения силы тока на всех элементах этой цепи одинаковы, а мгновенное значение напряжения между концами цепи равно алгебраической сумме мгновенных значений напряжений на резисторе (UR), конденсаторе (UC) и катушке индуктивности (UL).

Для того чтобы определить амплитудные (или действующие) значения напряжения и силы тока, а также сдвиг фаз между ними удобно использовать метод векторных диаграмм. Здесь действующие значения всех напряжений и токов рассматриваются как векторы, вращающиеся с угловой скоростью ω, равной циклической частоте переменного тока, а их мгновенные значения определяются проекциями этих векторов на горизонтальную ось. Так как сила тока в цепи одинакова, то построение векторной диаграммы начинается с вектора I¯0, модуль которого равен амплитудному значению силы тока в цепи. Направление этого вектора может быть любым. Зададим угол α = ωt к горизонтали.

векторная диаграмма переменного тока

Колебания напряжения на активном сопротивлении совпадают по фазе с колебаниями силы тока, поэтому вектор U¯0R, модуль которого равен U0R = I0 × R, совпадает по направлению с вектором I¯0. Сдвиг фаз между колебаниями силы тока и колебаниями напряжения на индуктивном сопротивлении составляет π / 2, причем ток отстает по фазе от напряжения. Поэтому вектор U¯0L, модуль которого равен U0L = I0 × ωL, нужно повернуть относительно вектора I¯0 на угол π / 2 против часовой стрелки. Вектор U¯0C, модуль которого равен I0 / ωC, отстает по фазе от вектора I¯0 на π / 2, поэтому его нужно повернуть на этот угол по часовой стрелке.

Для того чтобы найти напряжение на зажимах цепи, необходимо сложить три вектора: U¯0 = U¯0R + U¯0L + U¯0C.

В первую очередь сложим векторы U¯0R и U¯0C. Модуль этой суммы U’0 = [U¯0R + U¯0C]. Пусть ωL > 1 / ωC, тогда: U’0 = I0 × (ωL — 1 / ωC).

Теперь сложим векторы U¯0R и U’¯0. Модуль вектора U¯0 определяется по теореме Пифагора: U0² = U0R² + (U0L — U0C)² = I0² × R² + I0² × (ωL — 1 / ωC)². Соответственно амплитудное (действующее) значение силы тока в цепи переменного тока равно отношению амплитудного (действующего) значения напряжения на концах этой цепи к его полному сопротивлению (закон Ома для цепи переменного тока):

I0 = U0 / √(R² + (ωL — 1 / ωC)²) = U0 / Z, где:

  • Z — полное сопротивление (импеданс) цепи.
  • R — его активное сопротивление.
  • ωL — 1 / ωC — реактивное сопротивление цепи переменного тока.
  • ω = 2 × π × γ — циклическая, угловая частота. γ — частота переменного тока.

Импеданс при параллельном подключении Z = 1 / √(1 / R² + 1 / (1 / ωL — ωC)²).

Сдвиг фаз между силой тока и напряжением равен углу φ между векторами U¯0 и I¯0. В соответствии с графиком выше ток отстает от напряжения на угол φ, причем tgφ = (ωL — 1 / ωC) / R.

Для того чтобы определить мгновенные значения напряжений на активном, емкостном и индуктивном сопротивлениях, необходимо спроектировать векторы U¯0R, U¯0L, U¯0C на прямую АВ.

векторная диаграмма переменного тока

Тогда:

  • UR = I0 × R × sin × (ωt + φ).
  • UL = I0 × ωL × sin × (ωt + φ + π / 2).
  • UC = (I0 / ωС) × sin × (ωt + φ — π / 2).

Если 1 / ωС > ωL, то:

  • U’0 = I0 × (1 / ωС — ωL).
  • tgφ = (1 / ωC — ωL) / R, причем ток опережает напряжение по фазе на угол φ.

Таблица удельных сопротивлений проводников

Электрическое сопротивление (ρ) 1 метра провода, сечением 1 мм², при температуре 20 С°:

Материал проводника Удельное сопротивление ρ, Ом
Серебро 0.015
Медь 0.0175
Золото 0.023
Латунь 0,025. 0,108
Хром 0,027
Алюминий 0.028
Натрий 0.047
Иридий 0.0474
Вольфрам 0.05
Цинк 0.054
Молибден 0.059
Никель 0.087
Бронза 0,095. 0,1
Железо 0.1
Сталь 0,103. 0,137
Олово 0.12
Свинец 0.22
Никелин (сплав меди, никеля и цинка) 0.42
Манганин (сплав меди, никеля и марганца) 0,43. 0,51
Константан (сплав меди, никеля и алюминия) 0,44-0,52
Копель (медно-никелевый сплав с 43% никеля и 0,5% марганца) 0.5
Титан 0.6
Ртуть 0.94
Хромель (хром 8,7 — 10 %; никель 89 — 91 %; кремний, медь, марганец, кобальт — примеси) 1.01
Нихром (сплав никеля, хрома, железа и марганца) 1,05. 1,4
Фехраль 1,15. 1,35
Висмут 1.2
Хромаль (Сплав 4,5 — 6% алюминия, 17 — 30% хрома, железа) 1,3. 1,5

Сопротивление проводника определяется по формуле r = (ρ × l) / S, где:

  • r — сопротивление проводника, Ом.
  • ρ — удельное сопротивление проводника, Ом.
  • l — длина проводника, м.
  • S — сечение проводника, мм².

Закон Ома — скачать программу

Расчеты с использованием закона Ома также можно проводить в офлайн режиме. Для этого необходимо воспользоваться бесплатной программой «КИП и А». В пункте Электрика находится калькулятор, производящий расчеты по закону Ома для цепей постоянного и переменного тока:

закон Ома, скачать программу бесплатно