Принцип работы транзистора биполярного — устройство и конструкция

устройство и принцип работы транзистора биполярного
устройство и принцип работы транзистора биполярного

Транзистор (полупроводниковый триод) — это радиоэлектронный компонент из полупроводникового материала (обычно с тремя выводами), способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов.

Биполярные транзисторы являются более распространенным типом. К его базе подается небольшой ток, а он в свою очередь, управляет количеством тока, протекающего между коллектором и эмиттером. В данном обзоре будет подробно рассмотрены принцип работы и устройство такого транзистора. Детально разобравшись, как работает полупроводниковый триод, вы без труда разберетесь в терминологии и поймете всю суть процессов.

Устройство биполярного транзистора

Транзисторы — это довольно сложные устройства. Для лучшего понимания рассмотрим только наиболее простой тип радиоэлектронного компонента, с которыми радиолюбителям приходится сталкиваться чаще всего.

В устройство биполярного транзистора входит монокристалл, разделенный на три зоны, имеющие свой вывод:

устройство биполярного транзистора Б – база, очень тонкий внутренний слой.
Э – эмиттер, предназначается для переноса заряженных частиц в базу.
К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.

Расшифруем все эти определения и более детально погрузимся в мир транзисторов, изготовленных из полупроводника кремния (Si):

Каждый атом кремния образует связи с четырьмя соседними атомами кремния. Кремний имеет 4 электрона в своей валентной оболочке. И каждый электрон становится общим с соседним атомом кремния. Рассмотренная связь называется ковалентной.

Чистый кремний характеризуется низкой электропроводностью. И чтобы кремний смог проводить электричество, электроны должны поглотить некоторое количество энергии и стать свободными электронами.

легирование кремниевой пластины
Легирование кремниевой пластины

Метод легирования применяется для улучшения электропроводности полупроводников. Например вводится пяти валентный фосфор (P) или сурьма (Sb) — один электрон окажется свободным и сможет перемещаться в системе. Данный метод называется легирование донорной примесью или примесью n типа. Если ввести трех валентный бор (B), образуется свободное место (дырка), которое может занять электрон. Соседний электрон может занять дырку в любой момент. Такое движение электронов может быть представлено в виде движения дыр в противоположном направлении. Это называется легированием акцепторной примесью или примесью p типа.

Выполнив легирование кремниевой пластины данными способами получается транзистор, у которого имеются следующие типы проводимости:

  • n тип — носителями зарядов являются электроны.
  • p тип — носителями зарядов являются положительно заряженные дыры.

Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p:

транзисторы по типу проводимости

Разобравшись с легированием кремниевой пластины и определившись с типами проводимости, можно переходить к рассмотрению принципа работы транзистора.

Принцип работы транзистора

Чтобы понять, как работает транзистор, нужно разобраться в том, что происходит с электронами его базового элемента (диода). Диод образуется если легировать одну часть кремния примесью p типа, а другую примесью n типа. На границе этих частей будет происходить следующее:

Многочисленные электроны n стороны будут стремиться занять дырки, находящиеся на p стороне. При этом граница p стороны будет иметь небольшой отрицательный заряд, в то время как с n стороны заряд будет положительным. как работает транзистор (триод)
Электрическое поле, образующееся в результате этого процесса будет препятствовать дальнейшему естественному перемещению электронов. как работает транзистор (триод)
Если к диоду подключить определенным образом внешний источник энергии, то электроны и дырки будут к нему притягиваться, и в данном случае протекание тока не возможно. как работает транзистор (триод)
Однако если поменять стороны подключения источника энергии, ситуация изменится. как работает транзистор (триод)
Предположим источник энергии имеет напряжение достаточное для того, чтобы преодолеть потенциальный барьер. Сразу можно заметить, что электроны будут отталкиваться отрицательным полюсом. Когда электроны пересекают потенциальный барьер, они теряют энергию и легко занимают дырки в p области. Но из-за притяжения к положительному полюсу эти электроны теперь могут перемещаться к соседним дыркам в p области и двигаться по внешнему контуру. Данное явление называется прямым смещением диода. как работает транзистор (триод)

Зная вышеописанный принцип работы, можно легко понять как работает транзистор. Ведь фактически транзистор — это два зеркально соединенных диода с очень тонким и слаболегированным p слоем. Поэтому, как бы не был подключен источник питания, один диод будет всегда обратно смещенным и будет препятствовать прохождению тока. Это означает, что транзистор находится в закрытом состоянии. Посмотрим как это выглядит на схеме:

как работает транзистор (триод)
Транзистор находится в закрытом состоянии

Подключим второй источник энергии (смотреть схему). Напряжение его должно быть достаточным, чтобы преодолеть потенциальный барьер. Получаем обычный диод с прямым смещением, и большое количество электронов будет перемещаться из n области. Некоторые электроны займут свободные дырки и перемещаясь по соседним свободным дыркам будут двигаться к базе. Но электронов, перемещающихся в p область гораздо больше. И оставшиеся электроны будут притягиваться к положительному полюсу первого источника энергии и станут перемещаться далее.

Схема подключения второго источника энергии:

как работает транзистор (триод)
Принцип работы транзистора

Стоит обратить внимание на то, что p область транзистора очень узкая, и гарантирует отсутствие потока оставшихся электронов к положительному полюсу второго источника энергии. То есть слабый базовый ток усиливается к коллектору. Если увеличить базовый ток, то коллекторный ток увеличится пропорционально. Это простой пример усиления тока при помощи биполярного транзистора (β = Ic ⁄ Ib).

Материалы корпуса транзисторов

Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических (цилиндрической формы). Можно найти десятки разных типов транзисторных корпусов совершенно отличных форм и размеров.

материалы транзисторов

Сам полупроводник, основа транзистора, имеет размер песчинки или даже меньший. К нему практически невозможно подпаять провода, поэтому кристалл помещают в более просторный корпус из металла или пластика.

Рассмотрев принцип работы транзистора, можно отметить что несмотря на довольно простое устройство, данный полупроводниковый компонент играет важную роль в схемотехнике.