Принцип работы транзистора биполярного — устройство и конструкция
Транзистор (полупроводниковый триод) — это радиоэлектронный компонент из полупроводникового материала (обычно с тремя выводами), способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов.
Биполярные транзисторы являются более распространенным типом. К его базе подается небольшой ток, а он в свою очередь, управляет количеством тока, протекающего между коллектором и эмиттером. В данном обзоре будет подробно рассмотрены принцип работы и устройство такого транзистора. Детально разобравшись, как работает полупроводниковый триод, вы без труда разберетесь в терминологии и поймете всю суть процессов.
Устройство биполярного транзистора
Транзисторы — это довольно сложные устройства. Для лучшего понимания рассмотрим только наиболее простой тип радиоэлектронного компонента, с которыми радиолюбителям приходится сталкиваться чаще всего.
В устройство биполярного транзистора входит монокристалл, разделенный на три зоны, имеющие свой вывод:
Б – база, очень тонкий внутренний слой. | |
Э – эмиттер, предназначается для переноса заряженных частиц в базу. | |
К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера. |
Расшифруем все эти определения и более детально погрузимся в мир транзисторов, изготовленных из полупроводника кремния (Si):
Каждый атом кремния образует связи с четырьмя соседними атомами кремния. Кремний имеет 4 электрона в своей валентной оболочке. И каждый электрон становится общим с соседним атомом кремния. Рассмотренная связь называется ковалентной.
Чистый кремний характеризуется низкой электропроводностью. И чтобы кремний смог проводить электричество, электроны должны поглотить некоторое количество энергии и стать свободными электронами.
Метод легирования применяется для улучшения электропроводности полупроводников. Например вводится пяти валентный фосфор (P) или сурьма (Sb) — один электрон окажется свободным и сможет перемещаться в системе. Данный метод называется легирование донорной примесью или примесью n типа. Если ввести трех валентный бор (B), образуется свободное место (дырка), которое может занять электрон. Соседний электрон может занять дырку в любой момент. Такое движение электронов может быть представлено в виде движения дыр в противоположном направлении. Это называется легированием акцепторной примесью или примесью p типа.
Выполнив легирование кремниевой пластины данными способами получается транзистор, у которого имеются следующие типы проводимости:
- n тип — носителями зарядов являются электроны.
- p тип — носителями зарядов являются положительно заряженные дыры.
Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p:
Разобравшись с легированием кремниевой пластины и определившись с типами проводимости, можно переходить к рассмотрению принципа работы транзистора.
Принцип работы транзистора
Чтобы понять, как работает транзистор, нужно разобраться в том, что происходит с электронами его базового элемента (диода). Диод образуется если легировать одну часть кремния примесью p типа, а другую примесью n типа. На границе этих частей будет происходить следующее:
Многочисленные электроны n стороны будут стремиться занять дырки, находящиеся на p стороне. При этом граница p стороны будет иметь небольшой отрицательный заряд, в то время как с n стороны заряд будет положительным. | |
Электрическое поле, образующееся в результате этого процесса будет препятствовать дальнейшему естественному перемещению электронов. | |
Если к диоду подключить определенным образом внешний источник энергии, то электроны и дырки будут к нему притягиваться, и в данном случае протекание тока не возможно. | |
Однако если поменять стороны подключения источника энергии, ситуация изменится. | |
Предположим источник энергии имеет напряжение достаточное для того, чтобы преодолеть потенциальный барьер. Сразу можно заметить, что электроны будут отталкиваться отрицательным полюсом. Когда электроны пересекают потенциальный барьер, они теряют энергию и легко занимают дырки в p области. Но из-за притяжения к положительному полюсу эти электроны теперь могут перемещаться к соседним дыркам в p области и двигаться по внешнему контуру. Данное явление называется прямым смещением диода. |
Зная вышеописанный принцип работы, можно легко понять как работает транзистор. Ведь фактически транзистор — это два зеркально соединенных диода с очень тонким и слаболегированным p слоем. Поэтому, как бы не был подключен источник питания, один диод будет всегда обратно смещенным и будет препятствовать прохождению тока. Это означает, что транзистор находится в закрытом состоянии. Посмотрим как это выглядит на схеме:
Подключим второй источник энергии (смотреть схему). Напряжение его должно быть достаточным, чтобы преодолеть потенциальный барьер. Получаем обычный диод с прямым смещением, и большое количество электронов будет перемещаться из n области. Некоторые электроны займут свободные дырки и перемещаясь по соседним свободным дыркам будут двигаться к базе. Но электронов, перемещающихся в p область гораздо больше. И оставшиеся электроны будут притягиваться к положительному полюсу первого источника энергии и станут перемещаться далее.
Схема подключения второго источника энергии:
Стоит обратить внимание на то, что p область транзистора очень узкая, и гарантирует отсутствие потока оставшихся электронов к положительному полюсу второго источника энергии. То есть слабый базовый ток усиливается к коллектору. Если увеличить базовый ток, то коллекторный ток увеличится пропорционально. Это простой пример усиления тока при помощи биполярного транзистора (β = Ic ⁄ Ib).
Материалы корпуса транзисторов
Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических (цилиндрической формы). Можно найти десятки разных типов транзисторных корпусов совершенно отличных форм и размеров.
Сам полупроводник, основа транзистора, имеет размер песчинки или даже меньший. К нему практически невозможно подпаять провода, поэтому кристалл помещают в более просторный корпус из металла или пластика.
Рассмотрев принцип работы транзистора, можно отметить что несмотря на довольно простое устройство, данный полупроводниковый компонент играет важную роль в схемотехнике.